Angler: Dark Pool Resource Allocation

James Choncholas, Ketan Bhardwaj, Vlad Kolesnikov, Ada Gavrilovska

The Best Provider Has...

Low Network	Sufficient	Competitive
Latency	Capacity	Pricing
Affected by geography and connectivity.	PoPs are small and load is dynamic.	Across full application footprint.

Distributed Resource Allocation

- Early Days
 - Eucalyptus ('09)
 - OpenNebula ('11)
 - Nimbus ('12)
 - RESERVOIR ('11)
- Both Cloud and Edge use LP solvers.
 - TetriSched
 - Edge Federation
 - ENTS (SEC'22)
- Requires providers share:
 - Number of machines.
 - Current Utilization.
 - Other infrastructure details.
- These are trade secrets.

Distributed Resource Allocation

How to allocate resources across providers without sharing confidential information?

Angler: Dark Pool Resource Allocation

- Supports resource allocation across multiple edge providers.
 - Manages the complexity of finding nearby providers.
 - Integrates with Kubernetes.
- Protects privacy of providers and requestors.
 - Contributions to the pool are secret.
 - Requests from the pool are secret.
- Angler leverages AGMPC.
 - Authenticated Garbling Multi-Party Computation.
 - Naively applying MPC to resource allocation is too slow.
- **Angler** has only 2x overhead vs. non-private baseline.

- AGMPC has polynomial complexity in the number of participants.
 - Reduce participant set through localized DHT-based discovery.

- AGMPC has polynomial complexity in the number of participants.
 - Reduce participant set through localized DHT-based discovery.
- AGMPC is network constrained.
 - Optimize network stack for AGMPC. (parallelize initialization and BBR)

- AGMPC has polynomial complexity in the number of participants.
 - Reduce participant set through localized DHT-based discovery.
- AGMPC is network constrained.
 - Optimize network stack for AGMPC. (parallelize initialization and BBR)
- All parties learn placement.
 - Output delivery on a "need-to-know" basis.
 - Overlap output delivery with provisioning.

- AGMPC has polynomial complexity in the number of participants.
 - Reduce participant set through localized DHT-based discovery.
- AGMPC is network constrained.
 - Optimize network stack for AGMPC. (parallelize initialization and BBR)
- All parties learn placement.
 - Output delivery on a "need-to-know" basis.
 - Overlap output delivery with provisioning.
- Still too slow?
 - Best-effort semantics.

End-to-End Runtime Composite

- TCP congestion control (BBR).
- Parallelize network initialization.
- Targeted output delivery.
- Overlap output delivery with provisioning.
- Tailored DHTbased discovery.
- Best-effort semantics.

Conclusion

- **Angler** supports resource allocation from *dark pools*.
 - Manages the complexity of finding nearby providers.
 - Provisions Kubernetes namespaces on provider infrastructure.
- Protects privacy of providers and requestors.
- Multiparty Computation (MPC) keeps confidential information secret.
- Secure resource allocation has low overhead.

angler-dex.com Angler: Dark Pool Resource Allocation

James Choncholas, Ketan Bhardwaj, Vlad Kolesnikov, Ada Gavrilovska

